maths formulae for class 10 - ATG News

Breaking

Home Top Ad

Responsive Ads Here

Post Top Ad

Responsive Ads Here

Thursday, December 3, 2015

maths formulae for class 10

गणितातील सूत्रे
वर्तुळ :
त्रिज्या(R)- वर्तुळाच्या केंद्रबिंदूतून निघून परिघाला जाऊन मिळणार्याे रेशखंडाला वर्तुळाची त्रिज्या म्हणतात.
 वर्तुळाच्या व्यास (D) – केंद्रबिंदूतून निघून जाणार्या  व वर्तुळाच्या परिघावरील दोन बिंदुना जोडणार्याह रेषाखंडास वर्तुळाचा व्यास म्हणतात.
 वर्तुळाचा व्यास हा त्या वर्तुळाचा त्रिज्येचा (R च्या) दुप्पट असतो.

जीवा – वर्तुळाच्या परिघावरील कोणत्याही दोन बिंदूंना जोडणार्याा रेषाखंडाला वर्तुळाची जीवा म्हणतात.
 व्यास म्हणजे वर्तुळाची सर्वात मोठी जीवा होय.
 वर्तुळाचा व्यास हा त्रिजेच्या दुप्पट व परीघाच्या 7/12 पट असतो.

वर्तुळाचा परीघ हा त्रिजेच्या 44/7 पट व व्यासाच्या 22/7 पट असतो.
 वर्तुळाचा परीघ व व्यासातील फरक = 22/7 D-D = 15/7 D

अर्धवर्तुळाची परिमिती = 11/7 D+D (D=व्यास) किंवा D = वर्तुळाचा व्यास, त्रिज्या (r) × 36/7
 अर्धवर्तुळाची त्रिज्या  = परिमिती × 7/36
 वर्तुळाचे क्षेत्रफळ  = π × (त्रिज्या)2 = πr2 (π=22/7 अथवा 3.14)
 वर्तुळाची त्रिज्या = √क्षेत्रफळ×7/22 

वर्तुळाची त्रिज्या = (परीघ-व्यास) × 7/30
 अर्धवर्तुळाचे क्षेत्रफळ = π×r2/2 किंवा 11/7 × r2
 अर्धवर्तुळाची त्रिज्या = √(अर्धवर्तुळाचे ×7/11) किंवा परिमिती × 7/36

दोन वर्तुळांच्या त्रिज्यांचे गुणोत्तर = त्या वर्तुळांच्या परिघांचे गुणोत्तर.
 दोन वर्तुळांच्या क्षेत्रफळांचे गुणोत्तर हे त्या वर्तुळांच्या त्रिज्यांच्या गुणोत्तराच्या किंवा त्या वर्तुळांच्या परिघांच्या गुणोत्तराच्या वर्गाच्या पटीत असते. वर्तुळाची त्रिज्या दुप्पट केल्यास क्षेत्रफळ चौपट येते.
घनफळ
इष्टीकचितीचे घनफळ = लांबी × रुंदी × उंची = (l×b×h)

काटकोनी चितीचे घनफळ = पायाचे क्षेत्रफळ × उंची

गोलाचे घनफळ = 4/3 π×r3 (r=त्रिज्या)

गोलाचे पृष्ठफळ = 4π×r2     
घनचितीचे घनफळ = (बाजू)3= (l)3

घनचितीची बाजू = ∛घनफळ
 घनाची बाजू दुप्पट केल्यास घनफळ 8 पट, बाजू चौपट केल्यास घनफळ पटीत वाढत जाते, म्हणजेच 64 पट होते आणि ते बाजूच्या पटीत कमी अथवा वाढत जाते.

घनाचे पृष्ठफळ = 6 (बाजू)2    वृत्तचितीचे (दंडगोलाचे)
घनफळ = π×r2×h
 वृत्तचितीची उंची (h) = (घनफळ/22)/7×r2 = घनफळ×7/22×r2
 वृत्तचितीचे त्रिज्या (r) = (√घनफळ/22)/7×r2 = √घनफळ×(7/22)/h
इतर भौमितिक सूत्रे
समांतर भूज चौकोनाचे क्षेत्रफळ = पाया×उंची
 समभुज चौकोनाचे क्षेत्रफळ = 1/2×कर्णाचा गुणाकार

सुसम षटकोनाचे क्षेत्रफळ = (3√3)/2×(बाजू)2

वर्तुळ पाकळीचे क्षेत्रफळ = वर्तुळ कंसाची लांबी × r/2 किंवा θ/360×πr2

वर्तुळ कंसाची लांबी (I) = θ/180×πrघनाकृतीच्या सर्व
पृष्ठांचे क्षेत्रफळ = 6×(बाजू)2

दंडगोलाच्या वक्रपृष्ठाचे क्षेत्रफळ = 2×πrh
 अर्धगोलाच्या वर्कपृष्ठाचे क्षेत्रफळ = 3πr2

अर्धगोलाचे घनफळ = 2/3πr3

त्रिकोणाचे क्षेत्रफळ = √(s(s-a)(s-b)(s-c) )

शंकूचे घनफळ = 1/3 πr3h
 समभुज त्रिकोणाचे क्षेत्रफळ = √3/4×(बाजू)2
 दंडगोलाचे एकूण पृष्ठफळ = 2πr(r+h)

अर्धगोलाचे एकूण पृष्ठफळ = 2πr2
 (S=1/2(a+b+c) = अर्ध परिमिती)
 वक्रपृष्ठ = πrl
 शंकूचे एकूण पृष्ठफळ = πr2 + π r(r+l) r= त्रिज्या, l= वर्तुळ कंसाची लांबी
बहुभुजाकृती
n बाजू असलेल्या बहुभुजाकृतीच्या सर्व आंतरकोनांच्या मापांची बेरीज (2n-4) काटकोन असते, म्हणजेच 180(n-2)0 किंवा [90×(2n-4)]0 असते.
 सुसम बहुभुजाकृतीचे सर्व कोन एकरूप असतात व सर्व बाजू एकरूप असतात.
 बहुभुजाकृतीच्या बाह्य कोनांच्या मापांची 3600 म्हणजेच 4 काटकोन असते.
 n बाजू असलेल्या सुसम बहुभुजाकृतीच्या प्रत्येक बहयकोनाचे माप हे 3600/n असते.
 सुसम बहुभुजाकृतीच्या बाजूंची संख्या = 3600/बाहयकोनाचे माप
 बहुभुजाकृतीच्या कर्णाची एकूण संख्या = n(n-3)/2
तास, मिनिटे, सेकंद यांचे दशांश अपूर्णांकांत रूपांतर
1 तास = 60 मिनिटे,    0.1 तास = 6 मिनिटे,  0.01 तास = 0.6 मिनिटे1 तास = 3600 सेकंद,    0.01 तास = 36 सेकंद   1 मिनिट = 60 सेकंद,    0.1 मिनिट = 6 सेकंद1 दिवस = 24 तास = 24 × 60 = 1440 मिनिटे  = 1440 × 60 = 86400 सेकंद
घडयाळाच्या काटयांतील अंशात्मक अंतर
घड्याळातील लगतच्या दोन अंकांतील अंशात्मक अंतर 300 असते
 दर 1 मिनिटाला मिनिट काटा 60 ने पुढे सरकतो.
 दर 1 मिनिटाला तास काटा (1/2)0 पुढे सरकतो. म्हणजेच 15 मिनिटात तास काटा (7.5)0 ने पुढे सरकतो
 तास काटा व मिनिट काटा यांच्या वेगतील फरक = 6 –(1/0)0 = 5(1/2) = (11/2)0 म्हणजेचमिनिटकाट्यास 10 भरून काढण्यास (2/11) मिनिटे लागतात.
वय व संख्या :
दोन संख्यांपैकी मोठी संख्या = (दोन संख्यांची बेरीज + दोन संख्यातील फरक)÷2
 लहान संख्या = (दोन संख्यांची बेरीज – दोन संख्यांतील फरक)÷2
 वय वाढले तरी दिलेल्या दोघांच्या वयातील फरक तेवढाच राहतो.
दिनदर्शिका :
एकाच वारी येणारे वर्षातील महत्वाचे दिवस
 महाराष्ट्र दिन, गांधी जयंती आणि नाताळ हे दिवस एकाच वारी येतात.
 टिळक पुण्यतिथी, स्वातंत्र्यदिन, शिक्षक दिन, बाल दिन हे दिवस एकाच वारी येतात.
नाणी :
एकूण नाणी = एकूण रक्कम × 100 / दिलेल्या नाण्यांच्या पैशांची बेरीज
 एकूण नोटा = पुडक्यातील शेवटच्या नोटचा क्रमांक – पहिल्या नोटेचा क्रमांक + 1

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Post Bottom Ad

Responsive Ads Here